The microstructure of snow determines its fundamental properties such as mechanical strength, reflectivity, or thermo-hydraulic properties. Snow undergoes continuous microstructural changes due to local gradients in temperature, humidity, or curvature, in a process known as snow metamorphism. In this work, we focus on wet snow metamorphism, which occurs when the temperature is close to the melting point and involves phase transitions among liquid water, water vapor, and solid ice. We propose a pore-scale phase-field model that simultaneously captures the three relevant phase change phenomena: sublimation (deposition), evaporation (condensation), and melting (solidification). 2D simulations of the model unveil the impact of humidity and temperature on the dynamics of wet snow metamorphism at the pore scale. We also explore the role of liquid melt content in controlling the dynamics of snow metamorphism in contrast to the dry regime before percolation onsets.
This paper is part of a special issue on "Heterogeneous Drivers of Ice Formation" in Crystal Growth & Design.